
Automatic prompt engineer (APE) a framework for automatic instruction generation and selection. The instruction generation problem is framed as natural language synthesis addressed as a black-box optimization problem using LLMs to generate and search over candidate solutions.
The first step involves a large language model (as an inference model) that is given output demonstrations to generate instruction candidates for a task. These candidate solutions will guide the search procedure. The instructions are executed using a target model, and then the most appropriate instruction is selected based on computed evaluation scores.
APE discovers a better zero-shot CoT prompt than the human engineered “Let’s think step by step” prompt.
The prompt “Let’s work this out in a step by step way to be sure we have the right answer.” elicits chain-of-thought reasoning and improves performance on the MultiArith and GSM8K benchmarks:
